mit vaisunav viunyapeem visuvaviunyataya, Muure

P.G. PROGRAM M. Sc. Medical Physics

SEM-I

Paper-I: Mathematical methods in Physics, statistics and numerical analysis

SUB- JECT CODE			TH	EACHI	NG &	EVAL	UAT	ON S	SCH	EMI	E
		Schepping in the	TH	THEORY		ORY PRAC- TICAL					CREDITS 4
	Category	SUBJECT NAME	End Sem Universi ty Exam	Two Term Exam	Teac hers Ass ess men t	End Sem Uni vers ity Exa m	Tea che rs Ass ess me nt	Th	T	P	CREDITS
MSMP 101	Core	Mathematical methods in Physics, statistics and numerical analysis	60	20	20	0	0	3	grant.	. 0	4

Course Objectives:-

1. To develop the comprehensive understanding of Numerical Methods and Computer Applications

Course Outcomes:-

1. Student will be able to understand and solve the problems related to Numerical Methods and Computer Applications

Supraput

(m)

Coly

onri vaisimay yidhyapeetnyishyavidhyalaya, Indore

SYLLABUS

MSMP101:Mathematical methods in Physics and numerical analysis

Unit-1:

Fundamentals of differential and integral calculus Partial differential equations, Second order partial differential equations – Solution by the method of separation of variables – Boundary and initial value problems – one dimensional wave equation – Heat conduction equation – Laplace's equation. Applications in image reconstruction and evaluation

Unit-2

Vector Analysis: Differentiation of vector functions – Concept of gradient, divergence and curl-Gauss's Divergence Theorem – Green's Theorem – Stokes' Vector Space, linearly dependent and independent vectors – Schmidt's orthogonalisation process – Algebra of matrices – Special matrices – Geometrical significance of matrix operators – Rank of a matrix – Eigen values and eigen vectors – Diagonalisation – Cayley – Hamilton Theorem

Unit-3:

Fourier analysis and Partial Differential Equations: Fourier series – Harmonic analysis – Fourier transforms and properties – convolution theorems – Applications

Numerical methods, Computer applications: Linear Systems of Equations and Eigen Value Problems – Solutions of linear systems of equations by Gauss elimination method – Interactive methods of Jacobi and Gauss Seidel-inverse of matrices – Eigen value problems in matrices – Solution by power method

Unit-4:

Interpolation and Approximation – Interpolation – Newton's formulae – Forward and backward difference – Lagrange's interpolation – Curve fitting – Principles of least squares – Fitting of polynomials – Straight line, Parabolic and exponential.

Unit-5:

Numerical Differentiation --Numerical integration - Solution of Differential Equations - Trapezoidal rule - Simpson's rule - Numerical solution of ordinary differential equations - Euler's methods - Runge - Kutta methods - Taylor's series methods.

Interacting

(hy)

CV/A

REFERENCES

- 1. L.A.Pipes, Applied Mathematics for Engineers and Physicists McGraw Hill Book Co., 1980.
- 2. E.Butkov, Mathematical Physics Addison Wesley Co., London 1973.
- 3. E.Kreyzsig, Advanced Engineering Mathematics Wiley Eastern Ltd., 1980.
- 4. M.K. Venkataraman, Advanced Mathematics for Engineers and Scientists
- 5. A.Arfken: Mathematical Methods for Physicists (Academic Press).
- 6. S.S.Sastry, Introductory Methods of Numerical Analysis, Prentice Hall of India, New Delhi, 1979.
- 7. S.C.Gupta and V.K.Kapoor, Elements of Mathematical Statistics, Sultan Chand and Sons, New
- O Delhi, 1983.

- 8. S.Ramani, N.V.KoteswaraRao and R.Nagarajan, A test book on Computer Programming, M.M.C School of Management, Bombay 1984.
 - V.Rajaraman, Computer Programming in FORTRAN 77, Third edition, Prentice-Hall of India, New Delhi, 1987.
 - Venkataraman, Numerical Methods in Science and Engineering, National Publishing Co, Madras,
 1986.
 - 11. Bracewell, R.N, "The Fourier Transform and its applications", McGraw Hill International Edition, 2000.
 - 12. S.S.Sastry, "Introductory Methods of Numerical Analysis", Prentice Hall of India, New Delhi, 1992.

(m)

engla

P.G. PROGRAM M. Sc. Medical Physics SEM-I

Paper-II: BASIC ELECTRONICS

SUB- JECT CODE	13.85		TE	ACHI	NG &	EVAL	UAT	ION :	SCE	ŒMI	C
		Conversification of the	THEORY			PRAC- TICAL					
	Category	SUBJECT NAME	End Sem Universi ty Exam	Two Term Exam	Teac hers Ass ess men t	End Sem Uni vers ity Exa m	Tea che rs Ass ess me nt	Th	Т	P	CREDITS
MSMP 102	DC	BASIC ELECTRONICS	60	2.0	20	0	0	3	1	0	4

Course Objectives:-

1. To develop the comprehensive understanding of BASIC ELECTRONICS

Course Outcomes:-

1. Student will be able to understand and solve the problems related to BASIC ELEC-

TRONICS

(lay)

Contraction of the contraction o

MSMP102-BASIC ELECTRONICS

Unit 1:

Basic Electronic components- Semiconductor devices, diode, transistor, oscillator- Electrical measurements - Galvanometer and its applications, MultiMate, Universal Bridge, VTVM and Cathode ray oscilloscope - Special tubes - Electrometer tubes, Photomultiplier tubes and decatron tubes.

Unit 2:

Basic amplifier principles: Pre amplifier circuits -noise, linear pulse amplifier, pulse shaping, — D.C. amplifier – Power, amplifier – Distortion in amplifiers – Feedback amplifiers – emitter follower – Types of oscillators – Power supplies – Rectifiers, filter circuits Regulated HT and EHT supplies – RF power supplies.

Unit 3:

Trigger circuits:— Multivibrator and univibrator — Discriminator — Scale of two - Scale of ten—Coincidence and anticoincidence circuits — Amplitude analyzer and counting rate meters — Small current electrometers — Principles of Servomechanism and control.

Digital electronics, Logic systems: Logic gates, Flip flops- RS, Clocked RS, D, JK, MSJK and T flip flops

Unit 4:

Amplifiers and Oscillators: – Power amplifier design – class B push-pull amplifier – emitter follower – Darlington pair- operational amplifier characteristics – OPAMP amplifier and its frequency response – Instrumentation amplifier – Differentiating and integrating circuits. Solving differential equation – RC phase shift oscillator.

Unit 5:

LVDT – A.C and D.C Tachometers – Capacitance transducers – Thermistor based thermometers – Strain gauge – Ultrasonic transducers and their electrical equivalent circuits. Principles of filters and their application in instrumentation, Strip chart recorder – Magnetic recording – CRO – Phosphors – LED – LCD Plasma display – Seven segment – dot matrix system – Guest Host effect.

REFERENCES

- 1. J.D.Ryder, Electronics Fundamentals and Applications, Prentice Hall of India, New Delhi. 1987.
- 2. W.Cooper, Electronic Instrumentation and Measurement Techniques, Prentice Hall of India. 1970.
- 3. Sawhney, Electrical and Electronic Measurements and Instrumentation, DhanapatRai and Sons, New Delhi 1982.
- A. Malvino and Leech, Digital Principles and Applications, Tata McGrow Hills (1978)
- 5. R.P.Jain, Modern Digital Electronics, Tata McGrow Hills
- 6. J.Millman and C.Halkias. Integrated Circuits, McGraw Hill, 1979.

6

ent by

P.G. PROGRAM M. Sc. Medical Physics SEM-I

Paper-III: ELECTRO MAGNETIC THEORY, LASER AND OPTICS

SUB- JECT CODE			TE	ACHI	NG &	EVAL	UAT	ION	SCH	EME	Č.
			TH	EORY		PRA		it.			CREDITS
	Category	SUBJECT NAME	End Sem Universi ty Exam	Two Term Exam	Teac hers Ass ess men t	End Sem Uni vers ity Exa m	Tea che rs Ass ess me nt	Th	Т	P	CREDITS
MSMP 103		ELECTRO MAGNETIC THEORY, LASER AND OPTICS	60	20	20	0	0	3	1	0	4

Course Objectives:-

1. To develop the comprehensive understanding of ELECTRO MAGNETIC THEORY, LASER AND OPTICS

Course Outcomes:-

1. Student will be able to understand and solve the problems related to ELECTRO MAGNETIC THEORY, LASER AND OPTICS

Suprofues

Ou S

Confled

MSMP103-ELECTRO MAGNETIC THEORY, LASER AND OPTICS

Unit 1:

Time varying fields and Maxwell's equations: potential functions, electromagnetic boundary conditions, wave equations and their solutions, time harmonic fields

Plane electromagnetic waves: Plane waves in lossless media, Plane waves in lossy media, group

velocity, flow of electromagnetic power and the Poynting vector.

Unit 2:

Theory and applications of transmission lines: Transverse electromagnetic waves along a parallel plate transmission line, general transmission line equations, wave characteristics of finite transmission lines, Transmission line impedance matching.

Unit 3: Wave guides and cavity resonators: General wave behavior along uniform guiding structures, parallel-plate waveguide, rectangular wave-guides, circular wave-guides, dielectric wave guides, cavity resonators.

Unit 4:

The Table of the Table

Lasers: The Einstein coefficients, Laser rate equations, Three level and four-level systems, Temporal and spatial coherence, Ruby laser, Helium-Neon laser, Four level solid state lasers, Carbon dioxide laser, Dye laser, Semiconductor laser, Harmonic generation and stimulated Raman emission.

Unit 5:

Coherence and correlation, Holography, Propagation of light in a dielectric, Propagation in planar dielectric wave guide, Propagation in optical fibres, Calculation of fibre bandwidth, attenuation in optical fibres, fibre materials and fabrication methods, connectors and couplers

REFERENCES

1 David Griffiths, Introductory electrodynamics - Prentice Hall of India-1989

2. David Cheng, Field and Wave electromagnetics, Addison Wesley

3. K. Thyagarajan and A.K. Ghatak - Lasers - Theory and applications - MacMillan

4. F.G. Smith and J.H. Thomson, Optics - ELBS

5. M.J.N.Sibley - Optical Communications (IInd edition) - MacMillan - 1995

A. Ghatak and K. Thyagarajan, Optical Electronics- Foundation Books (Cambridge University) –

7. N. Sharma - Fibre Optics in telecommunications - Tata McGraw Hill - 1987

P.G. PROGRAM M. Sc. Medical Physics SEM-I

Paper-IV: NUCLEAR PHYSICS

SUB- JECT CODE		stime is alderone	TE	ACHI	NG &	EVAL	UAT	ION S	SCH	EME	
			TH	EORY		PRATIC					T CREDITS
	Category	SUBJECT NAME	End Sem Universi ty Exam	Two Term Exam	Teac hers Ass ess men t	End Sem Uni vers ity Exa m	Tea che rs Ass ess me nt	Th	Т	P	CREDITS
MSMP 104		NUCLEAR PHYSICS	60	20	20	0	0	3	1	0	4

Course Objectives:-

1. To develop the comprehensive understanding of NUCLEAR PHYSICS

Course Outcomes:-

1. Student will be able to understand NUCLEAR PHYSICS

principal

(m)

e-2/2

MSMP104-NUCLEAR PHYSICS

Unit 1:

Nuclear Structure: – Isotopes, Stability of nuclei, Binding energy, Nuclear forces. Radioactive decay, decay constant, decay chain, half life, mean life, General properties of alpha, beta and gamma rays – Laws of radioactivity – Decay scheme – Theory of alpha, beta and positron emission – alpha and Beta spectrum – gamma emission – electron capture – internal conversion ,nuclear isomerism, artificial radioactivity, production of isotopes, growth of activity, isotopic sources, neutron sources, fission products, Nuclear reactor

Unit 2:

Basic Quantum Mechanics: - Dual nature of matter, uncertainty principle - Operator formalisms - Eigen function and Eigen values - Expectation values - Schrodinger wave Equation. Rigid rotor - Harmonic oscillators and Hydrogen Atom. Elementary perturbation theory and variation principles - Heitler - London theory of Hydrogen molecule - Scattering theory

Unit 3:

Nuclear reaction: – Compound nucleus – Artificial transmutation – Production of high energy particle with Cyclotrons, Betatron, Proton Synchrotrons and Linear accelerations (LINAC), resonant transformer, Discovery of neutron and artificial radioactivity – Nuclear fission – Fission products – Fissile materials – Criticality – Four factor formula – Diffusion and slowing down of neutrons – Fermi equation – Homogeneous and heterogeneous systems – Various types of nuclear reactors – Nuclear weapons – Fusion and thermo nuclear reactions.

Unit 4:

Interaction of electromagnetic radiation with matter: — Thomson scattering - Photoelectric absorption — Angular distribution of photoelectrons — Compton effect, Compton process — Klein Nishina cross-section — Scattering coefficients — Angular distribution of Compton electrons — Pair production — Annihilation radiation, Angular distribution of pair production electrons — energy momentum conservation, Photo nuclear reactions,— Attenuation — Linear, mass attenuation coefficients— Total absorption coefficients. Absorption and scattering coefficients and cross sections

Unit 5:

Neutron capture Neutron sources, properties, energy classification – Elastic and inelastic scattering coefficients and cross sections – Energy transfer and logarithmic energy decrement – Inelastic scattering, Nuclear reaction, Dependence on E and Z - (n, p), (n, χ) , (n, γ) and other eaction – Neutron activation., Radio- isotope production.

REFERENCES 1. K.S.Krane, "Introductory Nuclear Physics", (John Wiley & Sons) 2. B.L.Cohen – Concepts of Nuclear Physics – Tata McGraw Hill 3. Practical Applications of Radioactivity and Nuclear Radiations, G.C.LowentalandP.L.Airey, Cambridge University Press, U.K., 2001 4. I Kaplan – Nuclear Physics – Addison Wesley (1962) 5. G.F.Knoll, Radiation Detection and Measurements 3rd ed. John wiley (2000) 6. E. Segre – Nuclei and Particles – Benjamin (1967) 7. W.E. Burcham& M. Jobes – Nuclear and Particle Physics – Longman (1995) 8. P.M.Mathews and K. Venkatesan - A Text Book of Quantum Mechanics – Tata McGraw Hill

((4))

Shri Vaishnav Vidhyapeeth Vishvavidhyalaya, Indore

P.G. PROGRAM M. Sc. Medical Physics

SEM-I

Paper-V: PHYSICS PRATICAL

SUB- JECT CODE			TE	ACHIN	NG & 1	EVAL	UAT	ION S	SCH	EME	
			ТН	EORY		PRA TIC					CREDITS
	Category	SUBJECT NAME	End Sem Universi ty Exam	Two Term Exam	Teac hers Ass ess men t	End Sem Uni vers ity Exa m	Tea che rs Ass ess me nt	Th	Т	P	CREDITS
MSMP 105		Physics Practical-I	00	00	00	90	60	0	0	12	6

List of Experiments:

- 1. Demonstration of MATLAB software.
- 2. Perform mathematical operations using OPAM as Adder, Subtractor, Divider, Multiplicator.
- 3. Regulated Power Supply. (Transistorized)
- 4. Wave shaping circuit, clipping, clamping, differentiating and integrating circuits.
- 5. R.C. coupled amplifier-frequency response.
- 6. Emitter follower.
- 7. FET characteristics and calibration of FET Input voltmeter
- 8. R.C. phase shifts or Wien Bridge (Transistor) Oscillator.
- 9. Measurement of Hybrid parameters of transistor.
- 10. 10. Operational amplifier (OP Amp) as integrator & differentiator
- 11. 13. Study of Astable, Monostable and BistableMultivibrator.
- 12. 14. MOSFET characterization and application as an amplifier.

Prilar Griff

engh