2ND YEAR / III Semester

ARCH 301: ARCHITECTURAL DESIGN STUDIO - II

		ςλ			TEA	CHING	SCHEM	E					EVALL	IATION					(HRS)
IRSE	E AREA	rPOLOG	NAME OF THE GOLDS					HRS			Т	HEORY				STUDIO		MARKS	z
COURSE	COURSE	COURSE IN	NAME OF THE COURSE	L	T	s	CREDIT	TOTAL CLASS	M ST 1 1 0	MST 2 10%	A. MST 10%	SS 50% OR 30%	ESUE 40%	TOT AL	IA 10% OR 60%	EV 10% OR 40%	TOTAL	TOTAL	EXAM DURATIO
ARCH 301	AR	STUDIO	ARCHITECTURAL DESIGN STUDIO II			12	12	12							240	160	400	400	

L - THEORY; S - STUDIO, T - TUTORIAL; C - CREDIT; HRS: HOURS; MST - MIDTERM TEST, A MST - AVERAGE OF MIDTERM, ESUE - END SEMESTER UNIVERSITY EXAMINATION; IA - INTERNAL ASSESSMENT PROGRESSIVE; SS - FOLIO FINAL Sessional (INTERNAL), EV - EXTERNAL VIVA VOICE, RVW - INTERMEDIATE REVIEW

COURSE OVERVIEW:

This course is intended to provide skills for designing a single use, small span and single-storey buildings. This course focuses on buildings for residential use.

OBJECTIVES OF THE COURSE:

To develop abilities in design in the context of user requirements.

To enhance the understanding of the complexities of architectural design for residential needs and develop creative design solutions for good living environments.

EXPECTED SKILLS / KNOWLEDGE TRANSFERRED:

Use of standards, handling of space, and application of knowledge gained from other subjects in design.

FOCUS: Material, Structure & Form

- The student will study and analyze the design and structural principle form natural object.
- The student will explore the inspiration from nature for design.
- The student will apply from the above exercise, into the design, construction of the man-made proposal.

COURSE CONTENTS:

- Nature as source of inspiration on design.
- The design process and product in nature.
- Data collection and compilation analysis inference as an understanding the design in nature.
- Application of above learning, translate into man-made product.
- Correlation between material, structure and form.
- Man- Nature Interface in generating space, place
- Theme & Focus of Design: User-activity analysis; context; Functional & aesthetic requirements for development of design programme; Concept & detailed design with a focus on load-bearing structures using brick, stone; timber, etc.; Development of forms through sketches, models, case studies etc.
- Basic Components: Behavioral Science; Functionality; Building Materials; Theory of Design; Form Development; Tectonic decisions Structures, Building Materials, Services; Site Planning; Building Control Regulations; Inclusive Design; Design Communication.
- Form Development: Exploring form in architecture; Importance; Principles of design; Evolution; Formulation & massing of multiple volumes in response to functional spaces; Interrelationship between multiple spaces & masses; Elements; Materials; Treatments; Stability. The Minor Exercise will be represented through conceptual development (sketches, physical & digital models).
- Design Analysis: Exploration & analysis of existing iconic Residential Architecture; Understanding design philosophy & process; Learning from design quality; Literature/book reviews; Architectural critiques.
- Design Exercise: Single building for 4-6 users involving multiple activities & spaces; Residence for single family; Complexity of major design Single building for 4-6 users involving multiple activities & spaces; Typology Residence for single family; Site extent Level site up to 500 m2.

GUIDELINES

- One Major And Minor tasks/ exercises are to be set from the entire syllabus
- The topic of the project is to be displayed on Institute Notice Board fifteen days in advance OF commencement of the classes

NOTE

- Necessary theoretical inputs to be given highlighting the norms and design issues. The topics not covered as
 design problems will have to be covered by the Studio faculty members through lecture/slideshow sessions
 and site visits.
- At least One major exercises and ONE minor design with TWO-time problems should be given.

- The final submission shall necessarily include a model for at least one of the two main problems.
- In end exam which is a viva-voce, the students have to present the entire semester work for assessment.
- Evaluation is to be done through viva voce by an external examiner appointed by the university at Institute. Portfolios, after the university exam, shall be retained at the Institute level for the viva voice

REFERENCE BOOKS:

Chiara Joseph de and Others. Time Savers Standards of Building Types. McGraw - Hill, 1980.

Chiara Joseph de and Others. Ilme Savers Standards of Building Types. McGraw - Hill, 1980.

Kirk, Paul Hayden and Stemberg, D. Eugene. Doctors Offices and Clinics, 2nd Ed. Reinhold Pub., USA, 1960.

MarkMorris, Architecture and the Miniature: Models, John Wiley & Sons, USA, 2000.

National Architectural graphic standards, Ramsey / Sleeper, The American Institute of Architects

Neufert, Ernst. Neufert Architects Data, Granada Pub. Ltd., London, 1970. Bousmaha Baiche & Nicholas Walliman, Blackwell Science Ltd

Pevsner, Nikolaus. A History of Building Types. Thames and Hudson, London, 1976.

Shah, S. Charanjit. Architects Hand Book Ready Reckoner. Galogotia Pub. Co.New Delhi, 1996.

Sketch Plan Build: World-class architects show how it is done, Harper Design, New York, 2005

Fincyclopaedia, Of Verpracular, Architecture by Paul. Officer.

- Encyclopaedia Of Vernacular Architecture by Paul Oliver

 Vernacular Architecture In The Twenty-First Century by Marcel Vellinga & Lindsay Asquith

 Architecture without Architects by Bernard Rudofsky
- Architecture For The Poor by Hassan Fathy

ARCH 303: BUILDING MATERIALS & CONSTRUCTION – III

		ĞΥ			TEAC	HING	SCHE	ΜE					EVALUA	ATION				S	(HRS)
COURSE	E AREA	YPOLO	NAME OF THE COURSE					S HRS			TH	EORY				STUDIO		MARK	NOITA
COI	COURSE	COURSET	NAIVIE OF THE COURSE	L	T	s	CREDIT	TOTAL CLASS	MST 1 10%	MST 2 10%	A. MST 10%	SS 50% OR 30%	ESUE 40%	TOT AL	IA 10% OR 60%	EV 10% OR 40%	TOTAL	TOTALI	EXAM DURA
ARCH 303	TE	THEORY CUM STUDIO	BUILDING MATERIALS & CONSTRUCTION – III	2		3	5	5	15	15	15	45	60	120	0	30	30	150	3

L - THEORY; S - STUDIO, T -TUTORIAL; C - CREDIT; HRS; HOURS; MST - MIDTERM TEST, A.MST - AVERAGE OF MIDTERM, ESUE - END SEMESTER UNIVERSITY EXAMINATION; IA INTERNAL ASSESSMENT PROGRESSIVE; SS - FOLIO FINAL Sessional (INTERNAL), EV - EXTERNAL VIVA VOICE, RVW - INTERMEDIATE REVIEW

COURSE OVERVIEW:

The course focuses on understanding the potentials as well as shortcomings of RCC as a building material.

OBJECTIVES OF THE COURSE:

To introduce and expose the students to various ways in which RCC is used in building construction. The course intends to impart the theory of reinforced concrete construction (in conjunction with the Theory of Structures which is a separate course), and practical knowledge through site visits to the construction sites.

EXPECTED SKILLS / KNOWLEDGE TRANSFERRED:

To understand the techniques of constructing using different materials

FOCUS: ADVANCED COMPONENTS

- The student will develop the understanding of the principle of frame structure system
- The student will understand various spanning system
- The student will develop an understanding of R.C.C

COURSE CONTENTS:

- Temporary structures such as shoring, strutting, formwork, scaffolding, etc.
- · Basic application skills of Fundamentals of Reinforced Cement Concrete: Superstructure, Horizontal Support Systems: Slab & Roof Systems: Vertical Support Systems:
- Steps, staircase, ramp, threshold definition, types of stairs with different materials, plans, sections, elevations and enlarged details.
- Advanced Door Types

GUIDELINES FOR QUESTION PAPER SETTING

All Theory cum studio-based courses

- Part- A (5 NOS X 6 MARKS = 30 MARKS) Answer all questions
- Part- B (2 NOS X15 MARKS = 30MARKS)
- (Either or type)

(Since they are a mix of drawing and theory content, all

Part-A questions relate theory

Part-B questions are drawing based.

It is not possible for a candidate to answer more than 4 drawing questions in a three-hour duration) to theory and all

- Students will be required to attempt 5+2 questions from the Eight questions, are to be set from entire syllabus. where 2 questions may be short answer, 2 questions may be short answer type with 2-3 subheads and 2, short with 4
- subheads answer type and 2 essay type questions which is compulsory. • Students should attempt total 7 Questions including the compulsory question.
- Question paper is to be set covering the entire syllabus.

Note: This is a studio subject and students should be made to prepare construction drawings for studio exercises along with the theoretical inputs. The studio work should be supplemented with appropriate side visits.

REFERENCE BOOKS:

Kotadiya A. S. Building Construction.: Mahajan Publishing, 2014

Barry, R. Construction of Buildings Vol - 3: Single Storey Frames, Shells and Lightweight Coverings. New Delhi: Affiliated East-West Press Pvt. Ltd., 1999 Barry, R. Construction of Buildings Vol - 4: Multi-Storey Buildings, Foundation and Substructures, Structural Steel Frames, External Walls and Cladding of Framed Buildings. New Delhi: Affiliated East-West Press Pvt. Ltd., 1999

Framed Buildings. New Delhi: Affiliated East-West Press Pvt. Ltd., 1999
Barry, R.. Construction of Buildings Vol - 1: Foundations and Oversite Concrete, Walls, Floors, Roofs.New Delhi: Affiliated East-West Press Pvt. Ltd., 1999
Barry, R.. Construction of Buildings Vol - 2: Windows, Doors, Fibers, Stairs Finishes. New Delhi: Affiliated East-West Press Pvt. Ltd., 1999
Biggs, John M.. Introduction to Structural Dynamics. New Delhi: McGraw Hill Education India Pvt Ltd, 2014
7. Ching, Francis D. K. Visual Dictionary of Architecture. Delhi: Wiley India (P) Ltd., 2012
8. Ching, Francis D. K. Building Structures Illustrated. New York: John Wiley & Sons, Inc., 2014
9. Ching, Francis D. K. Building Construction Illustrated. Delhi: Wiley India (P) Ltd., 2012
10. Chudley, R., Building Construction Handbook. Oxford: Butterworth-Heinemann Ltd., 2010

- 11. Deplazes, Andrea. Constructing Architecture Materials Processes Structures: A Handbook.Switzerland: Birkhauser- Publisher of Architecture, 2013 12. Dr R. B. Khasiya. Surveying.: Mahajan Publishing, 2014 13. Ford, Edward R. Details of modern architecture, Vol. 2: 1928 to 1988. London: MIT Press, 2003

- 14. Gorse, Christopher. Dictionary of Construction, Surveying and Civil Engineering. Oxford: Oxford University Press, 2012 15. Helper, Dana J. Drafting and Design for architecture and construction. New Delhi: Cengage learning, 2015
- 16. Hibbeler, Russell C.. Structural Analysis. India: Pearson Education Asia Pte. Ltd., 2013

- 17. Khasiya, R. B; Motiani A. T. Advanced Surveying. Ahmedabad: Mahajan Publishing, 2015
- 18. Kumar, Sushil. Building Construction. New Delhi: Standard Publishers Distributors, 2012 19. Laursen, Harold I.. Structural Analysis. New Delhi: McGraw Hill Education India Pvt Ltd, 2014

- 19. Ledusen, Harriot I.. Structural Analysis. New Demi: McGraw Hill Education India PVL Lid, 2014
 20. Levy, Matthys. Why Buildings Fall Down: How Structures Fail. New York: W. W. Norton and Co.,2002
 21. McKay, J. K. Building Construction Vol 2: Metric. Delhi: Pearson Education Asia Pte. Ltd., 2014
 22. McKay, J. K. Building Construction Vol 3: Metric. Delhi: Pearson Education Pte. Ltd., 2013
 23. McKay, J. K. Building Construction Vol 1: Metric. Delhi: Pearson Education Pte. Ltd., 2013
 24. McKay, W. B.. Building Construction Vol 1: Metric. New Delhi: Pearson Education Asia Pvt. Ltd.; India, 2013
 25. McLeod, Virginia. Detail In Contemporary Timber Architecture. UK: Laurence King Publishing, 2010

- Millias, Malcolm. Building structures from concept to design. London: Spon Press, 2005
 Millias, Malcolm. Building structures from concept to design. London: Spon Press, 2005
 Muttoni, Aurelio. Art of Structures: Introduction to the Functioning of Structures in Architecture. UK: Taylor & Francis, 2011
 Pandit, G. S. Structural Analysis: A Matrix Approach. New Delhi: Tata McGraw-Hill Publishing Company Ltd., 2008
 Parikh, Janak. Understanding Concept of Structural Analysis and Design. Anand: Charotar Publishing House, 2000
 Paulson, Boyd C.. Computer Applications in Construction. New Delhi: McGraw Hill Education India Pvt Ltd, 2014
- Paulson, Boyd C.: Computer Applications in Construction. New Dealin. Nicosaw mile ductation india PVI.
 Phillips, David. Detail in Contemporary Concrete Architecture. UK: Laurence King Publishing Ltd, 2012
 Punaima, B. C.: Comprehensive Design of Steel Structures. New Delhi: Laxmi Publications Pvt. Ltd., 2012
 Punmia, B. C.: Building Construction. New Delhi: Laxmi Publications Pvt. Ltd., 2008
 Rangwala, S. C.: Building Construction. Anand: Charotar Publishing House, 2014
 Rangwala, S. C.: Surveying and Leveling. Anand: Charotar Publishing House, 2011

- 36. Ruske, Wolfgang. Timber Construction for Trade, Industry, Administration: Basics and Projects. Switzerland: Birkhauser- Publisher of Architecture,
- 37. Salvadori, Mario. Why Buildings Stand Up: The Strength of Architecture. New York: W. W. Norton and Co., 1980
- 38. Sandaker, Bjorn N. Structural Basis of Architecture. UK: Taylor & Francis, 2011
 39. Schillaci, Fabio. Construction and Design Manual Architectural Renderings. Germany: Dom Publishers, 2010
- 40. Schodek, Daniel L.. Structures. New Delhi: PHI Learning Private Limited, 2014
- 41. Shah, M. G., Building Drawing: With an Integrated Approach to Built Environment. New Delhi: McGraw-Hill Publishing Company Ltd., 2013 42. Shah, M. G.; Padki, S. Y.; Kale, C. M., Building Construction Vol 4: Metric. New Delhi: Tata McGraw Hill Education Ltd., 2015
- 43. Watson, Donald. Time Saver Standards for Building Materials and Systems: Design Criteria and Selection Data. New Delhi: Tata McGraw Hill Education Private Limited, 2009
- 44. Watts, Andrew. Modern construction handbook. New York: Springer, 2013
- 45. . Roof Design. Newyork: DAAB Publication, 2007

ARCH 305: HISTORY OF ARCHITECTURE - III

			,			-	•												
		GY			TEAC	HING	SCHE	ИΕ					EVALUA	ATION				S	(HRS)
COURSE	E AREA	урого	NAME OF THE COURSE					S HRS			TH	IEORY				STUDIO		MARK	MOITA
COL	COURSE	COURSET	NAIVIE OF THE COURSE	L	Т	S	CREDIT	TOTAL CLASS	MST 1 10%	MST 2 10%	A. MST 10%	SS 50% OR 30%	ESUE 40%	TOT AL	IA 10% OR 60%	EV 10% OR 40%	TOTAL	TOTALI	EXAM DURA
ARCH 305	AR	THEORY	HISTORY OF ARCHITECTURE III	2			2	2	10	10	10	50	40	100				100	3

L - THEORY; S- STUDIO, T - TUTORIAL; C - CREDIT: HRS: HOURS; MST - MIDTERM TEST, A.MST - AVERAGE OF MIDTERM, ESUE - END SEMESTER UNIVERSITY EXAMINATION; IA - INTERNAL ASSESSMENT PROGRESSIVE; SS- FOLIO FINAL Sessional (INTERNAL), EV - EXTERNAL VIVA VOICE, RVW - INTERMEDIATE REVIEW

COURSE OVERVIEW:

Detailed study & analysis of architectural design fundamentals through significant e.g. in the light of the following for the periods mentioned in the modules –

Genesis of seed ideas & concepts; Timeline; Socio-political background, key people involved; Climatic & geographic influence; General settlement pattern; Cities & its civic places; Construction technology & material; Design principles; Typology; Evolution; Spatial organization; Form & Detailing.

The e.g. to represent the following historical styles are suggestive & students are encouraged to explore additional e.g. for a comprehensive understanding of the respective styles.

OBJECTIVES OF THE COURSE:

To impart knowledge about Indian culture, building art and vernacular construction techniques that would influence the architecture student to develop designs that are rooted in this country and suitable to the lifestyle of its people

To expose the students to a wide spectrum of architectural styles ranging from prehistoric to the pre-independence period in India.

To explain the students the evolution of architecture in relation to time with special emphasis on social, religious and environmental factors.

To make the students understand the developments in the construction technology in different periods.

EXPECTED SKILLS / KNOWLEDGE TRANSFERRED:

- 1) Acquire knowledge to identify the common characteristics among the monuments of a particular style.
- 2) Acquire graphic skills to present a building, analyze its elements and explain the composition.
- 3) Acquire knowledge of good practices of architecture in the past.

FOCUS: Medieval World: Indian, Islamic, Mughal

- The student will develop the understanding of architecture and urban form in settlements of the medieval period
- The student will get exposure to the processes and causes that led to the creation of the architecture of the middle ages
- The student will develop the understanding of architecture in unified cultural systems: universality and abstract models

COURSE CONTENTS:

- Architecture in India in the Gupta & Medieval periods studied at the scales of settlements, institutions, dwelling and community form
- Islamic architecture in the Middle East & Central Asia
- Islamic architecture in India: universal abstract principles, regional expressions
- Scales of city, institutions, dwellings
- Development of specialized building types and their architectural schemes
- Parallels in contemporaneous cities in India: Vijaynagar and Jaipur etc.

GUIDELINES FOR QUESTION PAPER SETTING

All Theory Courses

- Part- A (5 NOS X 2 MARKS = 10 MARKS) Answer all questions
- Part- B (2 NOS X15 MARKS = 30 MARKS)
- (Either or type)
- Students will be required to attempt five questions from the Eight questions, are to be set from entire syllabus. where 2 questions may be short answer type which is compulsory with 2-3 subheads and 2, short with 4 subheads answer type and 4 essay type questions.
- Students should attempt total Seven Questions including the compulsory question.

• Question paper is to be set covering the entire syllabus.

NOTE:-Emphasis should be laid on understating of building evolution and form. The continuous evaluation shall be made of students work based on various models, assignments and sketching Reference books:

A.Volwahsen, Living Architecture - India (Buddhist and Hindu), Oxford and IBM, London, 1969.

Brown, Percy. Indian Architecture: Buddhist and Hindu Periods. D.B. Taraporevala Sons and Co., Mumbai, 2003.

George Mitchell, Monuments of India, Vol I, Buddhist, Jain, Hindu; Penguin books, 1990 Grover, Satish. The Architecture of India. (Buddhist and Hindu period), Vikas Pub. House Pvt. Ltd., Ghaziabad, 1980.

Guruswamy Vaidyanathan Gateway to Indian Architecture, Edifice Publication, 2003

Rowl, Benjamin, Art and Architecture of India

Tadgell, Christopher. The History of Architecture in India: from the Dawn of Civilization to the End of the Raj. Om Book Service, New Delhi, 1990. Longman Group, U.K. Ltd., London, 1990 Vistara. The Architecture of India

- 1. V.I. Atroshenko and Judith Collins, The Origins of the Romanesque (Lund Humphries, London) 1985
- Fletcher, Banister. Sir Banister Fletcher's A History of Architecture. London: Butterworths, 1987. Print.
 Kostof, Spiro. A History of Architecture: Settings and Rituals. New York: Oxford UP, 1985. Print.
- 4. Joachim E. Gaehde (1989). "Pre-Romanesque Art". Dictionary of the Middle Ages 5. Tadgell, Christopher. A History of Architecture. London: Ellipsis, 2000. Print.
- 6. Ching, Francis D. K., Mark Jarzombek, and Vikramaditya Prakash. A Global History of ArchitectureHoboken, NJ: J. Wiley & Sons, 2007. Print.
- 7. History of World Architecture. London: Faber, 1979. Print 8. Norberg-Schulz, Christian, and Pier Luigi Nervi. History of World Architecture. New York: Abrams,1971. Print.
- 9. Bagenal, Philip. The Illustrated Atlas of the World's Great Buildings: A History of World Architecture .. S.1.: Leisure, 1980. Print. 10. Fazio, Michael W., Marian Moffett, Lawrence Wodehouse, and Marian Moffett. A World History of Architecture. Boston: McGraw-Hill, 2008. Print.
- 11. Browne, Edith A. (2005). Romanesque Architecture. Kessinger Publishing
- 12. Grabar, O. (1980). "Kubbat al-Şakhra". In Bosworth, C. E.; van Donzel, E.; Lewis, B.; et al. The Encyclopaedia of Islam, Volume 2, Part 1 (new ed.). Leiden: E. J. Brill.
- 13. Hillenbrand, Robert (1994). Islamic Architecture: Form, Function, and Meaning. New York: Columbia University Press
- 14. Willis, R. (1835). Remarks on the Architecture of the Middle Ages, Especially of Italy. Cambridge: The Pitt Press.

 15. Moffett, Marian; Fazio, Michael W.; Wodehouse, Lawrence (2003). A World History of Architecture (illustrated ed.). London: Laurence King Publishing.
- 16. Krautheimer, Richard (1986), Early Christian and Byzantine Architecture (4 ed.), Yale University Press
- 17. Jones, Tom Devonshire; Murray, Linda; Murray, Peter, eds. (2013). The Oxford Dictionary of Christian Art and Architecture (illustrated ed.). Oxford University Press
- 18. Braun, Hugh, An Introduction to English Mediaeval Architecture, London: Faber and Faber, 1951
- 19. Watkin, David (Sep 2005), A History of Western Architecture, Hali Publications
- 20. Kubach, Hans Erich; Romanesque Architecture, 1988

ARCH 306: CLIMATIC DESIGN

		ЗΥ			TEAC	HING	SCHEN	ΛE					EVALUA	ATION				S	(HRS)
JRSE	E AREA	YPOLO	NAME OF THE COURSE					S HRS			TH	EORY				STUDIO		MARK	NOIL
COURSE	COURSI	COURSETY	NAME OF THE COURSE	L	T	S	CREDIT	TOTAL CLASS	MST 1 10%	MST 2 10%	A. MST 10%	SS 50% OR 30%	ESUE 40%	TOT AL	IA 10% OR 60%	EV 10% OR 40%	TOTAL	TOTAL!	EXAM DURA
ARCH 306	AR	THEORY	CLIMATIC DESIGN	2	1		3	3	10	10	10	50	40	100				100	3

L - THEORY; S - STUDIO, T -TUTORIAL; C - CREDIT; HRS: HOURS; MST - MIDTERM TEST, A.MST - AVERAGE OF MIDTERM, ESUE - END SEMESTER UNIVERSITY EXAMINATION; IA - INTERNAL ASSESSMENT PROGRESSIVE; SS - FOLIO FINAL Sessional (INTERNAL), EV - EXTERNAL VIVA VOICE, RVW - INTERMEDIATE REVIEW:

COURSE OVERVIEW:

This subject area also known by the term building science in earlier times enlightens the students to the processes by which building and entire habitats can be designed to respond to nature, with climate as the basic parameter of design. Science (tools, data, standards, methods and principles) of building design and site planning as related to climate, particularly to tropical climates as found in India.

OBJECTIVES OF THE COURSE:

To equip the student with the basic understanding of climatic types in India, and the impact on requirements of building design and site planning; to introduce them to the basic science of building design and site planning for thermal comfort, daylighting and natural ventilation; familiarize them with the data, methods, principles, standards and tools for planning and designing for climatic comfort

EXPECTED SKILLS / KNOWLEDGE TRANSFERRED:

The student should be able to 'predict' climatic conditions in a given building (simple residence) and undertake redesign for given parameters. understanding architecture in relation to the natural and built environment.

- Students will understand the role and importance of climate as one of the major determinants of built form.
- The student will understand the climate as modifying factor of the built environment.
- The student will learn various climate-controlling devices.

COURSE CONTENTS:

- Introduction to climatic design: Impact of climate on design:
- **Bioclimatic & low-energy design:** Understanding the sun path & shading devices, the orientation of the building, openings- sizes, position. Examples of Low-energy projects & discussion on solar architecture.
- · Introduction to climatology:
- Elements of climate, & their impact on global, local, site & building context. Energy use & its implications. Introduction to Micro (site) climate effects of local factors, Landscape elements & any other elements in the site. Solar Geometry its effect & importance, Built environment, conditions, impact and issues of climatic balance in traditional/ vernacular and contemporary built environments
- Introduction to urban heat island effect.
- Study of Passive Environmental Control Mechanisms, Tropics and its Climatic zones, Macro and MicroClimate (site climate).
- Implications of climatic forces in nature of spaces and forms, patterns of organization, & elements of built form at individual building & collective form.

Thermal Comfort

Understanding of human body's comfort level., Thermal comfort indices

Defining Comfort, Comfort zone & scale, a Different way of heat gain in the building., Behavior & properties of material/s

Psychometrics study and analysis, Studies through the built environment, case analysis, theory and its application, models and testing.

- Integrated passive design:
- Introduction to simulation software: Introduction to computer simulation for climatic design, software like Climate Consultant, HEED, Ecotect or related advanced software. Design of a space using simulation software with the application of principles of climatic design.

GUIDELINES FOR QUESTION PAPER SETTING

All Theory Courses

- Part- A (5 NOS X 2 MARKS = 10 MARKS) Answer all questions

- Part- B (2 NOS X15 MARKS = 30 MARKS)
- (Either or type)
- Students will be required to attempt five questions from the Eight questions, are to be set from entire syllabus. where 2 questions may be short answer type which is compulsory with 2-3 subheads and 2, short with 4 subheads answer type and 4 essay type questions.
- Students should attempt total Seven Questions including the compulsory question.
- Question paper is to be set covering the entire syllabus.

NOTE:-Emphasis should be laid on understating of building evolution and form w.r.t climate. The continuous evaluation shall be made of students work based on various models, assignments and sketching

The topics here to be dealt with keeping in mind Indian climatic conditions.NBC and BIS quidelines/standards have to be introduced in all relevant contexts

RECOMMENDED BOOKS:

A.Konya- Design Primer for Hot Climates, Architectural Press, London, 1980.

B.Givoni - Man, Climate & Architecture, Applied Science, Essex 1982

De. Environment Chemistry

Donald Watson & Kenneth labs - Climatic Design - Mcgraw Hill NewYork 1983.

E.Schild & M.Finbow - Environmental Physics in construction & its application in Architectural Design, Granada, London, 1981.

Koenigsberger, O.H. and Others. Manual of Tropical Housing and Building. Orient Longman, Chennai, 2003.

Konya, Allan. Design for Hot Climates.

Kukreja, C.P. Tropical Architecture. Tata McGraw-Hill Pub. Co. Ltd., New Delhi, 1978.

M.Evans - Housing, Climate & Comfort, Architectural Press, London, 1980.

Markus, T.A. and Morris. E.N. Buildings, Climate and Energy. Pitman Pub. Ltd., London, 1980.

Olgyay and Olgyay. Solar Control and Shading Devices.

Sharma and Kaur, Environmental Pollution

• An Introduction To Building Physics by Narasimhan

• Manual Of Tropical Housing And Building – Part I – Climatic Design by O.H. Koenigsberger

• Housing Climato & Comfort by M. Evans

- Housing Climate & Comfort by M.Evans
- Man, Climate And Architecture, Applied Science, Banking Essex by B. Givoni
- Climatic Design by Donald Watson

ARCH 307: THEORY OF STRUCTURES - II

						-		• • • •											
		GY			TEAC	HING	SCHE	ИΕ					EVALUA	ATION				S	(HRS)
COURSE	E AREA	YPOLO	NAME OF THE COURSE					S HRS			TH	EORY				STUDIO		MARK	ATION
COL	COURSI	COURSETY	NAME OF THE COURSE	L	T	S	CREDIT	TOTALCLASS	MST 1 10%	MST 2 10%	A. MST 10%	SS 50% OR 30%	ESUE 40%	TOT AL	IA 10% OR 60%	EV 10% OR 40%	TOTAL	TOTALI	EXAM DURA
ARCH 307	TE	THEORY	THEORY OF STRUCTURE II	2			2	2	10	10	10	50	40	100				100	3

L - THEORY; S - STUDIO, T -TUTORIAL; C - CREDIT: HRS: HOURS; MST - MIDTERM TEST, A.MST - AVERAGE OF MIDTERM, ESUE - END SEMESTER UNIVERSITY EXAMINATION; IA-INTERNAL ASSESSMENT PROGRESSIVE; SS - FOLIO FINAL Sessional (INTERNAL), EV - EXTERNAL VIVA VOICE, RVW - INTERMEDIATE REVIEW COURSE OVERVIEW:

Gives an in-depth understanding of the concepts associated with different Elements of Structures. Structural systems- ways to create inner space; Understanding loads of various types understanding the forces and Moments –

Definition, cause, effect, units Types of forces, Conditions of equilibrium Beam reactions OBJECTIVES OF THE COURSE:

To provide knowledge of different forces, force systems, Beams types sectional Properties behaviour of different members due to applied forces.

EXPECTED SKILLS / KNOWLEDGE TRANSFERRED:

Basic principles of mechanics and behaviour of elements of structures.

- The student will develop conceptual understanding by using the abstract method of analysis of structures.
- The student will develop the understanding of basic requirement of stability, the strength of the material
- The student will learn the behaviour of basic structural elements and their importance in Structural System.

COURSE CONTENTS:

STRUCTURAL CONCEPTS IN ARCHITECTURE

Theory of simple bending Introduction, pure bending & ordinary bending, Assumptions derivation of flexure formula section modulus Numericals on flexure equation.

- Centre of gravity, determining the centroid of simple figures. Moment of inertia, its application to sections subjected to bending, determining M.I. of simple and compound sections, Welded joints: Introduction, Advantages and disadvantages of welded joints, types, the strength of fillet weld, the design of welded joint for plates and unsymmetrical sections for axial loading
- Resolution of forces
- The concept of triangulation and its application in pin jointed trusses
- The assumption in the strength of materials, basic terminology, a brief history of strength of materials
- Concept & importance of the shear force and the bending moment.
- Pure Bending stress & combined direct and bending stresses.
- Stability, buckling of columns, short and long columns.
- Deflection and its importance, code provisions, the study of the deflected shape of simple structures. Solutions to problems.

Propped Cantilevers Introduction, Reaction of a prop, Cantilevers with Udl's, point loads, prop at the end & at intermediate positions, slope & deflection

- The concept of shear stress, average and maximum shears stress. Horizontal shear stress and its variation across the cross-section of the beam.
- Shear stresses in beams Introduction, stress distribution for standard shapes like rectangle circle triangle I, T L, C Section, Direct &bending Stresses Introduction,

GUIDELINES FOR QUESTION PAPER SETTING

All Theory Courses

- Part- A (5 NOS X 2 MARKS = 10 MARKS) Answer all questions
- Part- B (2 NOS X15 MARKS = 30 MARKS)
- (Either or type)
- Students will be required to attempt five questions from the Eight questions, are to be set from entire syllabus. where 2 questions may be short answer type which is compulsory with 2-3 subheads and 2, short with 4 subheads answer type and 4 essay type questions.
- Students should attempt total Seven Questions including the compulsory question.
- Question paper is to be set covering the entire syllabus.

Reference Books:

Junarkar S. B., Mechanics of Structures Vol 1, Charotar Publishing House, India, 1995

Khurmi. R.S. Engineering Mechanics, S. Chand and Co.Ltd., New Delhi, 1999.

Laudner T.J. and Archer R.R., Mechanics of Solids in Introduction, McGraw - Hill International Editions, 1994

POPOV, E.P., Mechanics of solids, Prentice - Hall Inc, Englewood Cliffs, New Jersy - 1976
Ramamrutham. S. Engineering Mechanics, 7th Ed. Dhanpat Rai Pub. Co. Ltd., Delhi, 2004.
S. Ramamrutham and Narayanan R., Strength of Materials, Dhanpat Rai Publications, New Delhi, 2002

Timoshenko, C.P., and Gere., Mechanics of materials, McGraw - Hill Book Company, New York, 1984 Timoshenko. S. and Young, D.H. Engineering Mechanics, McGraw-Hill International Editions

- James Ambrose, Building Structure, Canada Wiley, 2012
- Ching, Francis D. K., Building Structures Illustrated, New York, John Wiley & Sons, Inc., 2014
 Deplazes, Andrea, Constructing Architecture Materials Processes Structures: A Handbook, Switzerland, Birkhauser- Publisher of Architecture, 2013
- 4. Barry, R., Construction of Buildings Vol. 1: Foundations and Oversite Concrete, Walls, Floors, Roofs, New Delhi, Affiliated East-West Press Pvt. Ltd.,
- 5. Biggs, John M., Introduction to Structural Dynamics, New Delhi, McGraw Hill Education India Pvt Ltd., 2014
- 6. Junnarkar, S. B., Mechanics of Structures Vol 1, Anand, Charotar Publishing House, 2012
 7. Onouye, Barry S., Statics And Strength Of Materials For Architecture And Building Construction, Chennai, Pearson India Education Services Pvt
- 8. Khurmi, R. S., Strength of Materials: Mechanics of Solids, New Delhi, S. Chand & Company Ltd., 2013 9. Laursen, Harold I., Structural Analysis, New Delhi, McGraw Hill Education India Pvt Ltd, 2014

- 10. Hibbeler, Russell C., Structural Analysis, India, Pearson Education Asia Pte. Ltd., 2013
 11. Pandit, G. S., Structural Analysis: A Matrix Approach, New Delhi, Tata McGraw-Hill Publishing Company Ltd., 2008
 12. Charleson, Andrew., Structure as architecture: Sourcebook for architects and structural engineers, London, Taylor & Francis, 2015
- 13. Ball, N. P., Textbook of Engineering Mathematics, New Delhi, Laxmi Publications Pvt. Ltd., 2011 14. Ramamrutham, S., Theory of Structures, Delhi, Dhanpat Rai & Sons, 2013
- 15. Kumar, Ashok, Theory of Structures, New Delhi, Laxmi Publications Pvt. Ltd., 2004
- 16. Parikh, Janak, Understanding Concept of Structural Analysis and Design, Anand, Charotar Publishing House, 2000 17. Levy, Matthys, Why Buildings Fall Down: How Structures Fail, New York, W. W. Norton and Co.,2002
- 18. Salvadori, Mario, Why Buildings Stand Up: The Strength of Architecture, New York, W. W. Norton and Co., 1980 19. Schodek, Daniel L. Structures. Englewood Cliffs, NJ: Prentice-Hall, 1980. Print.
- 20. Millais, Malcolm. Building Structures: From Concepts to Design. London: Spon, 2005. Print.
- 21. Corkill, P. A., H. L. Puderbaugh, and H. K. Sawyers. Structure and Architectural Design. Iowa City: Sernoll, 1974. Print. 22. Ambrose, James E. Building Structures. New York: Wiley, 1988. Print.
- 23. Burns, John A. Recording Historic Structures. Washington, D.C.: American Institute of Architects, 1989. Print.
- 24. Forsyth, Michael. Structures & Construction in Historic Building Conservation. Oxford, UK: Blackwell, 2007. Print.
 25. Muttoni, A. The Art of Structures: Introduction to the Functioning of Structures in Architecture. Abingdon, Oxford, UK: EPFL/Routledge, 2011. Print.
- 26. Sandaker, Bjørn Normann, and Arne Petter. Eggen. The Structural Basis of Architecture. New York: Whitney Library of Design, 1992. Print. 27. Seward, Derek. Understanding Structures: Analysis, Materials, Design. Basingstoke: Palgrave Macmillan, 2003. Print.
- 28. Rosenthal, Hans Werner., and Hans Werner. Rosenthal. Structural Decisions: The Basic Principles of Structural Theory, Their Application to the Design of Buildings and Their Influence on Structural Form. London: Chapman & Hall, 1962. Print.
 29. Salvadori, Mario, and Robert A. Heller. Structure in Architecture: The Building of Buildings. Englewood Cliffs, NJ: Prentice-Hall, 1975. Print
- 30. Salvadori, Mario, Saralinda Hooker, and Christopher Ragus. Why Buildings Stand Up: The Strength of Architecture. New York: Norton, 1980. Print.
- 31. Cowan, Henry J. Architectural Structures: An Introduction to Structural Mechanics. New York: Elsevier, 1976. Print. 32. Gordon, J. E. The New Science of Strong Materials, Or, Why You Don't Fall through the Floor.Princeton, NJ: Princeton UP, 1984. Print.
- 33. Mainstone, R. J. Structure in Architecture: History, Design, and Innovation. Aldershot, Hampshire: Ashgate, 1999. Print.
 34. Miret, Eduardo Torroja, J. J. Polivka, and Milos Polivka. Philosophy of Structures: English Version by J.J. Polivka and Milos Polivka. Berkeley, CA: U
- of California, 1962. Print
- 35. Morgan, William, Daniel Williams, and Frank Durka. Structural Mechanics: A Revision of Structural Mechanics. Harlow: Longman, 1996. Print.
 36. Watson, Donald, Time saver Standards for Building Materials and Systems: Design Criteria and Selection Data, New Delhi, Tata McGraw Hill
- Education Private Limited, 2009
- 37. National Building Code of India, 1983, Part VI, Structural Design.
 38. IS 883 Code of Practice for Design of Structural Timber in Buildings IS 800 Code of Practice for use of Structural Steel in General Building Construction

ARCH 308: COMPUTER APPLICATION II

		8			TEAC	HING	SCHE	ИE					EVALUA	ATION				S	(HRS)
OURSE	E AREA	YPOLO	NAME OF THE COURSE					S HRS			TH	IEORY				STUDIO		MARK	DURATION
100	COURS	COURSET	NAME OF THE COURSE	L	Т	s	CREDIT	TOTALCLASS	MST 1 10%	MST 2 10%	A. MST 10%	SS 50% OR 30%	ESUE 40%	TOT AL	IA 10% OR 60%	EV 10% OR 40%	TOTAL	TOTALI	EXAM DURA
ARCH 308	SK	STUDIO	COMPUTER APPLICATION II			3	3	3							90	60	150	150	

L - THEORY; S - STUDIO , T -TUTORIAL; C - CREDIT; HRS: HOURS; MST - MIDTERM TEST , A.MST - AVERAGE OF MIDTERM , ESUE - END SEMESTER UNIVERSITY EXAMINATION; IA - INTERNAL ASSESSMENT PROGRESSIVE; SS - FOLIO FINAL Sessional (INTERNAL) , EV - EXTERNAL VIVA VOICE, RVW - INTERMEDIATE REVIEW

OBJECTIVES OF THE COURSE:

The course imparts basic knowledge on computers to upgrade the general understanding and ability in computing in the realm of architecture. To enhance the visualizing skills of the students by exposing them to the latest modelling software.

EXPECTED SKILLS / KNOWLEDGE TRANSFERRED:

Developing overall skills in various computer-aided tools, processes and presentation.

FOCUS: Computer

- The student will become adept at using CAD software for drafting
- The student will be able to create digital 3d models

COURSE OVERVIEW:

The course provides the foundation and capability to represent the concepts threedimensionally.

Sketching Techniques

COURSE CONTENTS:

- CAD Drafting (e.g. AutoCAD, Archicad, Rhino, Vector work, etc.)
- CAD Modeling I (e.g. Sketch Up, etc.)
- 3D Rendering & Architectural Visualization (Vray, 3D Max, Lumion, etc.)

GUIDELINES

Continuous Evaluation shall be made of students work based on various models, sketches assignments and market surveys.

One Major And rest minor tasks are to be set from the entire syllabus

The topic of the project is to be displayed on Institute Notice Board fifteen days in advance OF commencement of the classes

NOTE:

Evaluation is to be done through viva voice. Portfolios, after the university exam, shall be retained at the Institute level for the viva - voice

REFERENCE BOOKS:

- John, Elys. CAD Fundamentals for Architecture. London: Laurence King, 2013. Print.
 Scott Onstott. Enhancing architectural drawing and models with Photoshop. Sybex
 Joaniel Tal., Rendering in sketchup. Wiley
 Gladfelter, Donnie. AutoCAD 2013 and AutoCAD LT 2013: No Experience Required. Indianapolis, IN: Wiley, 2012. Print

ARCH 309: THEORY OF DESIGN

		₹5			TEAC	HING	SCHE	ИΕ					EVALUA	ATION				S	(HRS)
JRSE	E AREA	YPOLO	NAME OF THE COURSE					S HRS			TH	EORY				STUDIO		MARK	NOIL
COURSE	COURSI	COURSETY	NAME OF THE COURSE	L	T	S	CREDIT	TOTAL CLASS	MST 1 10%	MST 2 10%	A. MST 10%	SS 50% OR 30%	ESUE 40%	TOT AL	IA 10% OR 60%	EV 10% OR 40%	TOTAL	TOTAL!	EXAM DURA
ARCH 309	AR	THEORY	THEORY OF DESIGN			2	2	2							45	60	105	150	

L - THEORY; S - STUDIO, T - TUTORIAL; C - CREDIT; HRS: HOURS; MST - MIDTERM TEST, A MST - AVERAGE OF MIDTERM, ESUE - END SEMESTER UNIVERSITY EXAMINATION; IA - INTERNAL ASSESSMENT PROGRESSIVE; SS - FOLIO FINAL Sessional (INTERNAL), EV - EXTERNAL VIVA VOICE, RVW - INTERMEDIATE REVIEW

COURSE OVERVIEW:

To provide the student of architecture a foundation in the conception of forms, spatial aspects, compositions and their analysis in buildings.

To impart knowledge about the various processes in design that have been prevalent in the world over time.

OBJECTIVES OF THE COURSE:

To impart the skills of three-dimensional visualization and presentation.

To train the Students in the field Analytical approach

To expose the students to a wide spectrum of architectural styles and theory.

To explain to the students how architecture evolved in relation to time with special emphasis on social, religious and environmental factors.

EXPECTED SKILLS / KNOWLEDGE TRANSFERRED:

To develop understanding of the basic principles of space and mass, circulation and architectural composition

Acquire knowledge to identify the common characteristics among the monuments of a particular Style.

COURSE CONTENTS:

UNIT-1 THEORY OF DESIGN

- Design:
- **Design Process:**
- **Design Problems And Solutions:**
- Design Thinking:
- Design Concepts, Philosophies And Strategies:

UNIT-2 THEORY OF ARCHITECTURE

- **Architectural Space And Mass:**
- Aesthetic Components Of Design:
- Circulation:
- **Principles Of Composition**
- Design Process And Analysis Of Building:

UNIT-3 HISTORY:

- Influence of Industrial Revolution on building materials, Construction Technology, the evolution of new building types and increasing user requirements.
- Characteristic styles of modern architecture up to First World War. Steel structures, Arts and crafts movement, Art Nouveau, Vienna School, Chicago School, Monumentalism, Expressionism and beginning of RCC. Theories of John Ruskin, William Morris, Henry Vande Velde, Otto Wagner, Peter Behrens and Louis Sullivan.
- Contributions to Architecture and Theory made by pioneers-Le-Corbusier, Frank Lloyd Wright, Walter Gropius, Mies Van der Rohe in the periods between the Worlds Wars.
- Characteristics of modern architecture after the Second World War. Study of Alvar Aalto, Ero Saarinen, Richard Neutra, Louis I Kahn, Phillip Johnson, etc.
- Design theories and contributions of Engineer- architects like Pier Luigi Nervi, Felix Candela, Buckminster Fuller, and Frei Otto.
- Pre-independence architecture in India: Development of secular architecture from the end of the 18th Century to the middle of the 20th Century.

Reference books:

Benevolo, Leonardo. History of Modern Architecture: the modern movement Vol.2. Routledge and Kegan Paul, London, 1971. Benevolo, Leonardo. History of Modern Architecture: the tradition of modern architecture Vol.1. Routledge and Kegan Paul, London, 1971. Bernard Tschumi, Architecture and Disjunction

Bruno Zevi, Architecture as Space

Bryan Lauson - How Designers Think, Architectural Press Ltd., London, 1980. Charles Jencks, The Language of Post Modern Architecture

Curtis, J.R. William, Modern Architecture since 1900, Prentice-Hall, Inc., New Jersey, 2002

Ernest Burden, Elements of Architectural Design – A Visual Resource, Van Nostrand Reinhold Company, 1994
Frampton Kenneth Modern Architecture: A Critical History London: Thomes & Hudson, 1980
Francis D. K. Ching, Architecture - Form, Space and Order, Van Nostrand Reinhold Company, 1979
Geoffrey Baker, Design Strategies in Architecture
Geoffrey Broadbent - Design in Architecture - Architecture and the human sciences - John Wiley & Sons, New York, 1981
Giedion, Sigfried, Space, Time and Architecture: the growth of a new tradition, 4th Ed. Harvard University Press, Cambridge, 1962.
Hilberseimer, L. Contemporary Architecture: Its roots and trends. Paul Theobald, Chicago, 1964.
K.W.Smithies, Principles of Design in Architecture, Van Nostrand Reinhold Company, 1981
Nigel Cross - Developments in Design Methodology, John Wiley & Sons, 1984
Norherr schulz C. Principles of Modern Architecture, London Andreas Papadakis 2000

Norberg schulz C., Principles of Modern Architecture, London Andreas Papadakis, 2000.

Pevsner, Nicolaus Oersonem: Pioneers of Modern Design from William Morris to Walter Gropius-

Rob Krier , Architectural Composition
Robert Venturi , Complexity and Contradiction in Architecture by:
Robin Boyd , The Puzzle of Architecture

Roger H. Clark, Michael Pause, Precedents In Architecture, Van Nostrand Reinhold Company, 1996
Sam F. Miller, Design Process - A Primer For Architectural & Interior Design, Van Nostrand Reinhold Company, 1995
Sharp, Dennis. Twentieth Century Architecture: A Visual History, Facts On File. New York, 1991
Steen Eiler Rasmussen, Experiencing Architecture
Tom Heath - Method in Architecture, John Wiley & Sons, New York, 1984

V.S.Pramar, Design Fundamentals in Architecture, Somaiya Publications, New Delhi, 1973 Vitruvius, The Ten Books on Architecture

ARCH 319: ELECTIVE - II

		У5			TEAC	HING	SCHE	ΛE					EVALU	ATION					(HRS)
JRSE	E AREA	YPOLOG	NAME OF THE COURSE					HRS			TH	IEORY				STUDIO		MARKS	ATION
COURSE	COURSE	COURSE T	NAME OF THE COURSE	L	T	s	CREDIT	TOTAL CLASS	MST 1 10%	MST 2 10%	A. MST 10%	SS 50% OR 30%	ESUE 40%	TOT AL	IA 10% OR 60%	EV 10% OR 40%	TOTAL	TOTALI	EXAM DUR
ARCH 319	SU	STUDIO	ELECTIVE- II (POOL I)			1	1	1							50		50	50	

L - THEORY; S - STUDIO, T - TUTORIAL: C - CREDIT; HRS: HOURS; MST - MIDTERM TEST, A MST - AVERAGE OF MIDTERM, ESUE - END SEMESTER UNIVERSITY EXAMINATION; IA - INTERNAL ASSESSMENT PROGRESSIVE; SS - FOLIO FINAL Sessional (INTERNAL), EV - EXTERNAL VIVA VOICE, RVW - INTERMEDIATE REVIEW

The creative electives provide an opportunity to express talents which are different from architecture but related to imagination, visualization & creation. They offer a unique experience of ingenuity & creativity. The essence of the creative domain can be achieved by exploring different technology, techniques, processes, concepts, compositions. The outcome will be through portfolio & presentations.

COURSE OVERVIEW:

The following is a representative list of what may constitute Institute projects:

Seminars, Tutorials/ additional classes for any course, Guest Lectures, putting up Exhibitions, Workshops, participating in Architectural Competitions or conducting Site Visits or Study Tours.

OBJECTIVES OF THE COURSE:

overall nurturing of the student with issues in practice and field outside

EXPECTED SKILLS / KNOWLEDGE TRANSFERRED:

better grooming than just books and theories.

COURSE CONTENTS:

As Per Pool Electives Choices Stage I even semester pool

GUDFLINES

One Major And MinorTasks are to be set from the entire syllabus

The topic of the project is to be displayed on Institute Notice Board fifteen days in advance OF commencement of the classes

NOTE:

Evaluation is to be done through viva voce by external examiner appointed by the university at Institute. Portfolios, after the university exam shall be retained at Institute level for the viva - voice

Chairperson Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya Indore Deputy Registrar Shri Vaishnav Vidyapeeth Vishwavidyalaya Indore