

COURSE											
					A Teachers Assessment* Assessment*			FRAC			
CODE	CATEGORY	COURSE NAME	L	Т	Р	RED	EM sity m	erm m	ers ient*	EM sity m	Teachers ssessment*
						U U			each essn	ND S liver Exal	Teachers ssessmen
							ē 5		T Ass	G E	T Ass
		THEORY AND									
MTCE	DCS	DESIGN OF	2	1	2	4	60	20	20	20	20
1201	DCS	METAL	2	1		4	00	20	20	30	20
		STRUCTURES									

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P – Practical; C - Credit; ***Teacher Assessment** shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

The students (A) will be able to design the different Steel Structures (B) according to IS codal specification(C) efficiently & economically (D) with safety provisions

Course Outcomes:

- 1. Design bolted and welded connections in different steel structures.
- 2. Design various storage structures like bunker, silo and tanks.
- 3. Design light gauge steel sections.
- 4. Understand and analyze the behavior of space structures.
- 5. Design various types of steel bridges.

Syllabus:

UNIT I

Design of Connections: Types of connections; Welded and bolted; Throat and root stresses in fillet welds; Seated connections; Un-stiffened and stiffened seated connections; Moment resistant connections; Clip angle connections; Split beam connections; Framed connections; HSFG bolted connections

UNIT II

Design of Storage Structures: Introduction to storage structures and classifications; Design of Bunkers; Design of silos; Design of pressed steel water tank

UNIT III

Design of Bridges: Study and interpretation of loading standards for bridges; Codal provision for bridge structure; Classification for bridge structure; Design of truss bridges; Plate girder bridge as per IS codes Specification.

UNIT IV

Analysis and Design of Industrial Buildings: Analysis and design of different types of trusses; Introduction to space structures and double layer grids; Analysis and design of industrial buildings; Braced and un-braced gable frames with gantry rigid industrial frames and fire resisting design.

UNIT V

Design of Light Gauge Steel Sections: Forms of light gauge sections; Shapes of decks and panels; Local buckling of thin element; Multiple stiffened compression element; Compression on un-stiffened elements; Axially loaded compression members.

Text Books:

- 1. Duggal S.K., Limit state design of steel structure, TMH publication, 2014
- 2. Punmia BC, Design of Steel structure, Laxmi Publication, 2011

Reference Books:

- 1. Subramanian.N, Design of Steel Structures, Oxford University Press, 2014.
- 2. Dayaratnam P, Design of Steel structure, S. Chand ltd. New Delhi 2008.
- 3. Ramchandra, Design of Steel structure, Scientific Publishers, 2011

List of Practical's:

1. Detailed drawing of various structural systems as per the syllabus.

areci. Chairpe**rson** Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya Indore

SEMESTER II

						s	TEACHING & EVALUATION SCHEME THEORY PRACTICAL					
COURSE CODE	CATEGORY	COURSE NAME	L	Т	Р	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	
MTCE 1202	DCS	THEORY OF PLATES AND SHELL	2	1	0	3	60	20	20	0	0	

Course Objectives:

To enable the student analyze and design thin shell structures including domes, hyperbolic, parabolic, elliptic and cylindrical shells.

Course Outcomes:

- 1 Analyse and design thin shell structures including domes, hyperbolic, parabolic, elliptic and cylindrical shells
- 2 Formulate Finite Element Equations for solution of the structural response of plate bending problems and obtain solutions to shell structures

Syllabus:

UNIT I

Theory of Plates: Bearing of long rectangular plates to the cylindrical surface with different edge conditions; Pure bending of plates-Differential equations of equilibrium; Theory of small deflections of laterally loads plates; Boundary conditions; Moment curvature relationship

UNIT II

Analysis of rectangular plates; Navier's and Levy solutions; Exact theory of plates; Symmetrical bending of circular plates; Continuous rectangular plates

UNIT III

Special and approximate methods of theory of plates; Singularities; Use of influence surfaces; Use of infinite integrals and transforms; Strain energy methods; Experimental methods.

UNIT IV

Theory of Shells: Classification of shells; Gaussian curvature; General theory of cylindrical shells; Membrane theory and bending theory for cylindrical shells; Long and short shells; Shells with and without edge beams, Fourier loading.

UNIT V

Equation of equilibrium for shells of surface of revolution; Reduction to two differential equations of second order; Spherical shells; Membrane theory for shells of double curvature; cylindrical shells; Hyperbolic-parabolic shells; Funicular shells

Text Book:

- 1. S Timoshenko, S Woinowasky K, Theory of Plates and Shells, McGraw Hill Co. Ltd.
- 2. Theory of Plates and Shells by bhavikatti New age publication Delhi

Reference Books-

- 1. Analysis of plates by T.K.Varadan and K.Bhaskar, Narosa Publishing House, 1999.
- 2. Stresses in Shells by Flugge. Blaisdell Publishing Co, 1966
- 3. Design and construction of concrete shell roofs by G.S.Ramaswamy, CBS Publishers& Distributors, 1986.

edistrar

SEMESTER II

							TEACHING & EVALUATION SCHEME				
						S	T	HEORY	•	PRAC	TICAL
COURSE CODE	CATEGORY	COURSE NAME	L	Т	Р	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*
MTCE 1203	DCS	FINITE ELEMENT METHOD	2	1	0	3	60	20	20	0	0

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P – Practical; C - Credit;*TeacherAssessmentshallbebasedfollowingcomponents:Quiz/Assignment/Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives: To provide the fundamental concepts of the theory of the finite element method

Course Outcomes:

- 1. To obtain an understanding of the fundamental theory of the FEA method
- 2. To develop the ability to generate the governing FE equations for systems governed by partial differential equations
- 3. To understand the use of the basic finite elements for structural applications using truss, beam, frame, and plane elements
- 4. To understand the application and use of the FE method for heat transfer problems.

Syllabus:

UNIT I

Introduction to Finite Element Method: General applicability and description of finite element method; Comparison of different methods

UNIT II

Solution of Finite Element Method: Solution of Equilibrium Problems; Eigen value problems; Propagation problems; Computer implementation of Gaussian Eliminations; Choleski's decomposition; Jacobi's and Ranga Kutta Method

UNIT III

General Procedure of Finite Element Method: Descretization of the domain; Selection of shapes; Types and number of elements; Node numbering technique; Interpolation polynomials, their selection and derivation in terms of global and local coordinates; Convergence requirements; Formulation of element characteristic matrices and vectors; Variational approach; Assembly of element matrices and vectors and derivation system equations; Computation of element resultants

UNIT IV

Iso-parametric Formulation: Lagrange and Hermite's interpolation functions; Isoparametric Elements; Numerical Integration

Chairperson Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya indore

UNIT V

Static Analysis: Formulation of equilibrium equation; Analysis of truss and frames; Plane Stress and Plane Strain Problems.

Text Book:

- 1. Weaver, Johnson, Finite element for structural analysis, Prentice-Hall International
- 2. HC Martin, Matrix structural analysis, McGraw-Hill Inc.
- 3. CF Abel, CS Desai, Finite element methods, Prentice Hall India Learning Private Limited, 2008

References Books:

- 1. Schaum's Outline of Finite Element Analysis (Schaum's Outlines), McGraw-Hill Education,1995
- 2. C. S. Krishnamoorthy, Finite Element Analysis Theory and Programming, Tata McGraw-Hill,2000

SEMESTER II

								Univ, Ex Ex Ex Assess Assess END Univ, Ex			-
COURSE CODE	CATEGORY	COURSE NAME	L	Т	Р	CREDITS		Term am		SEM ersity am	Teachers Assessment*
MTCE 1204	DCS	DESIGN OF EARTH QUAKE RESISTANT STRUCTURES	2	1	0	3	60	20	20	0	0

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P – Practical; C - Credit; ***Teacher Assessment** shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

This course integrates information from various engineering and scientific disciplines in order to provide a rational basis for the design of earthquake-resistant structures.

Course Outcomes:

- 1 Understanding of basic principles and importance of structural dynamics and earthquake effects on structures.
- 2 Learning the importance of structural dynamics and earthquake exactions in civil engineering in practice.
- 3 Learning and apply basic methods employed for analysis of civil engineering problems involving dynamics and earthquake.

Syllabus:

UNIT I

Seismic Strengthening of Existing Buildings: Cases histories-Learning from earthquakes; Seismic strengthening procedures.

UNIT II

Torsion and Rigidity: Rigid Diaphragms; Torsional moment; Center of mass and center of rigidity torsion effects; Lateral Analysis of Building Systems; Lateral load distribution with rigid floor diaphragms; Moment resisting frames; Shear walls; Lateral stiffness of shear walls; Shear wall-frame combination, examples.

UNIT III

Concept of Earthquake Resistant Design: Objectives of seismic design; Ductility, hysteric response & energy dissipation; Response modifications factor, Design spectrum, Capacity design; Classification of structural system; IS code provisions for seismic design of structures; Multi-storied buildings; Design criteria; P-A effects; Storey drift; Design examples of ductile detailing of RCC structures.

UNIT IV

Seismic Design of Special Structures: Elevated liquid storage tanks; Hydrodynamic pressure in tanks; Stack like structures; IS-1893 code provisions for bridges; Superstructures and substructures; Submersible bridges; Hydrodynamic effect due to reservoir; Concrete gravity dams.

UNIT V

Engineering Seismology: Basic terms related to engineering seismology; Seismic waves; Earthquake magnitude and intensity; Ground motion; Dynamic response of structures; Normalized response spectra; Seismic coefficients and seismic zone coefficients.

Text Book:

- 1. Chopra A.K., Dynamics of Structures', Theory & Applications to Earthquake Engineering, Prentice Hall India, New Delhi-1995
- 2. Clough & Penzien, Dynamics of Structures, McGraw Hill Book Co. Inc.
- 3. Paz M, Structural Dynamics, , Van Nostrand Reinhold, New York
- 4. Paz, M, International Handbook of Earthquake Engineering, Chapman & Hall, New York.

References Books:

- 1. IS-1893-1984, Indian Standard Criteria for Earthquake Resistant Design of Structures, B.I.S., New Delhi.
- 2. IS-4326-1993, Indian Standard Code of Practice for Earthquake Resistant Design and Construction of Buildings, B.I.S., New Delhi.

NEC Chairperson Board of Studies Shri Vaishnav Vidyapeeth Vishwavidyalaya indore

Sistrai

SEMESTER II

							TEACHING & EVALUATION SCHEME						
					S	T	THEORY PRACTICAL THEORY PRACTICAL THEORY PRACTICAL THEORY PRACTICAL THEORY PRACTICAL THEORY PRACTICAL THEORY PRACTICAL			TICAL			
COURSE CODE	CATEGORY	COURSE NAME	L	Т	Р	CREDITS	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*		
MTCE 1205(1)	DCS	STRUCTURAL DESIGN OF FOUNDATION AND RETAINING STRUCTURES	2	1	0	3	60	20	20	0	0		

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P – Practical; C - Credit; ***Teacher Assessment** shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

To impart knowledge on geotechnical and structural design of different types of foundation and retaining structures appropriate to the type of soil for different structures.

Course Outcomes:

At the completion of this course, the student shall acquire knowledge and ability,

- 1. To select and design appropriate foundations based on various criteria,
- 2. To check the stability of various components of different types of foundations
- 3. To understand various recommendations regarding earthquake design of foundations
- 4. To select and design different types of retaining wall based on various criteria.

Syllabus:

UNIT I

Foundation Structures- Rigid and Flexible Foundations; Loads and their effects; Design requirements; Geotechnical design; Empirical and exact methods of analysis of foundations; Design loads for foundations; Recommended approach to structural design of foundations; Introduction to combined piled raft foundation (CPRF)

UNIT II

IS 456 Provisions for Design of Footings and Pedestals: Design Loads for foundation design,; Basis of structural design of R.C. footings; Soil pressure on foundations; Conventional analysis of footings subjected to vertical load and moments; General planning and design of independent footings, minimum depth and detailing of steel requirements, checking for development lengths of main bars in footings.

UNIT III

Design of Raft Foundations: Common types of rafts; Plain slab rafts for lightly loaded buildings, flat slab rafts for framed buildings; Mat foundation, beam and slab rafts, cellular rafts, piled rafts, annular rafts, grid foundation; Deflection requirements of beams and slabs in rafts; General considerations in design of rigid rafts; Types of loadings and choice of rafts

UNIT IV

Effect of Earthquakes on Foundation Structures: IS 1893 (2016) recommendations regarding layout of foundations; Classification of foundation strata, types of foundations allowed in sandy soils; Methods to prevent liquefaction and settlement.

UNIT V

Design of Cantilever and Basement Retaining Walls: Introduction, earth pressure on rigid walls; Calculation of earth pressure on retaining walls; Design of ordinary R.C. cantilever walls; Design of basement walls

Text Book:

- 1. P.C. Varghese, Design of Reinforced Concrete Foundations, Prentice Hall India Learning Private Limited (2009)
- 2. Swami Saran, Analysis and Design of Sub structures, Oxford and IBH Publishing Co. PVT. Ltd, New Delhi
- 3. Unnikrishnana Pillai and Devadas Menon, Reinforces Concrete Design, McGraw Hill Publishing Pvt. Ltd.

References Books:

- 1. Tomlinson, Foundation Design and Construction, Prentice Hall Publication
- 2. Relevant IS Codes.

necu Chairperson Shri Vaishnav Vidyapeeth Vishwavidyalaya Indore

SEMESTER II

							TEACHING & EVALUATION SCHEME					
						\mathbf{S}	THEORY			PRACTICAL		
COURSE CODE	CATEGORY	COURSE NAME	L	Т	Р	CREDIT	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*	
MTCE	DCC	INSTRUMENTATION		1	0	2	<i>c</i> 0	20	•	0	0	
$ _{1205(2)} $ DCS AND EXI	AND EXPERIMENTAL TECHNIQUES	2		0	3	60	20	20	0	0		

 $\label{eq:Legends: L-Lecture; T-Tutorial/Teacher Guided Student Activity; P-Practical; C-Credit;$

***Teacher Assessment** shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

- 1. To learn about the calibration and sensitivity
- 2. To know in detail about Sensors
- 3. To know transducers and photo elasticity.
- 4. To understand the model analysis.

Course Outcomes:

- 5. To develop the knowledge about used instruments in civil engineering
- 6. To have the knowledge about Moiré phenomenon.
- 7. To have the idea about the model analysis.

Syllabus:

UNIT I

Generalized measurement systems; calibration and sensitivity; Standards of measurements of various quantities

Detectors; Sensor system elements; transducer and devices; Different type of sensors; modifying and transmitting method

UNIT II

Construction details of temperature transducers; Vibration and shock measurement; Force and load transducers; Velocity transducers; Torque transducers; Pressure measurements and pressure transducers

UNIT III

Photo elasticity; Basic optics and polariscope; Photo elastic effect; Stress-optic relations; Isoclinic; Iso-chromatics; Calibration of model; Separation techniques; Fractional fringe order determination; Stress freezing techniques.

UNIT IV

Moiré phenomenon; Analysis of Moiré fringes; Measurement of strain; Displacement; Rotation and slope for in plane and out of plane problems.

UNIT V

Model Analysis; Different types of mode; Law of structural similitude and non-dimensional analysis; Buckingham Pi theorem; Prediction for Prototype; Size effect; applications.

Text Book:

- 1. Transducer & Instrumentation by Murty, D.V.S, Prentice Hall India Learning Private Limited; 2 edition (2008)
- 2. Instrumentation and Technique by S. Sheel, Narosa Publishing House (2013)

Aistra nde

SEMESTER II

COUNCE							TEACHING & EVALUATION SCHEME						
						STI	T	HEORY		PRAC	ACTICAL		
COURSE CODE	CATEGORY	COURSE NAME	L	Т	Р	CREDIT	END SEM University Exam	Two Term Exam	Teachers Assessment*	END SEM University Exam	Teachers Assessment*		
MTCE 1205(3)	DCS	DESIGN OF TALL STRUCTURES	2	1	0	3	60	20	20	0	0		

Legends: L - Lecture; T - Tutorial/Teacher Guided Student Activity; P – Practical; C - Credit; ***Teacher Assessment** shall be based following components: Quiz/Assignment/ Project/Participation in Class, given that no component shall exceed more than 10 marks.

Course Objectives:

- 1 To know the behaviour of tall structures
- 2 To understand Characteristics of Wind and Earthquake Forces
- 3 To understand the shear walls and frame structure

Course Outcomes:

- 1. Achieve Knowledge of design and development of problem solving skills.
- 2. Understand the principles of strength and stability
- 3. Design and develop analytical skills.
- 4. Summarize the behavior of various structural systems.
- 5. Understand the concepts of P-Delta analysis

Syllabus:

UNIT I

Design Criteria: Design philosophy, loading, sequential loading, and materials – high performance concrete, fiber reinforced concrete, lightweight concrete, design mixes. Loading and Movement: Gravity loading: Dead and live load, methods of live load reduction, Impact, Gravity loading, Construction loads

UNIT II

Wind loading: static and dynamic approach, Analytical and wind tunnel experimentation method. Earthquake loading: Equivalent lateral force, modal analysis, combinations of loading, working stress design, Limit state design, Plastic design.

UNIT III

Behaviour of Various Structural Systems: Factors affecting growth, Height and structural form; High rise behavior, Rigid frames, braced frames, in-filled frames, shear walls, coupled shear walls, wall-frames, tubular, cores

UNIT IV

Analysis and Design: Modeling for approximate analysis, accurate analysis and reduction techniques, analysis of building as total structural system considering overall integrity and major subsystem interaction, analysis for member forces; drift and twist,

UNIT V

Stability of Tall Buildings: Overall buckling analysis of frames, wall frames, approximate methods, second order effects of gravity of loading, P-Delta analysis,

Structural elements: sectional shapes, properties and resisting capacities, design, deflection, cracking, pre-stressing, shear flow. Design for differential movement, creep and shrinkage effects, temperature effects and fire.

Text Book:

- 1. Tall Building Structures: Analysis and Design, Bryan Stafford Smith, Wiley,
- 2. Structural Analysis and Design of Tall Buildings: Steel and Composite Construction, Bungale S. Taranath, CRC Press, 2011.
- 3. Lynn S.Beedle, "Advances in Tall Buildings"- CBS Publishers and Distributors.

References Books:

- 1. Designing Tall Buildings: Structure, Mark Sarkisian, Routledge; 1 edition, 2011.
- Dr. Y.P. Gupta Editor, "Proceedings National Seminar on High Rise Structures-Design and Construction practices for middle level cities"- New Age International Limited